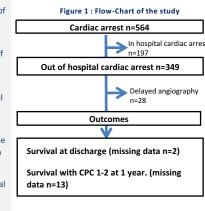
Impact of Percutaneous Coronary Angioplasty and Extra-Corporal Life Support on Survival of Patients with Out of Hospital Cardiac Arrest.

Morgan Benais, Michel Zeitouni, Paul Guedenay, Lee Nguyen, Nicolas Brechot, Mathieu Kerneis, Charles-Edouard Luyt, Olivier Barthelemy, Guillaume Hekimian, Rémi Choussat, Mathieu Schmidt, Marie Hauguel-Moreau, Gerard Helft, Claude Le Feuvre, Jean-Philippe Collet, Gilles Montalescot, Alain Combes and Johanne Silvain. *johanne.silvain@aphp.fr Sorbonne Université Paris 6 (UPMC), ACTION Study Group, INSERM UMRS 1166, département de cardiologie and département de réanimation médicale, Pitié-Salpêtrière Hospital (APHP), Paris, France


Abstract

Background Myocardial infarction is the main cause of out-of-hospital-cardiac arrest (OHCA). While systematic coronary angiography for a potential percutaneous coronary intervention (PCI) associated to Extra-corporal life support (ECLS) is the standard of care in OHCA, the benefit on survival remains debated.

Purpose Our study evaluated the impact of successful PCI and ECLS use on the survival of patients admitted for OHCA.

Methods In this observational study, we included the patients admitted for an OHCA without obvious extra cardiac cause who underwent a systematic coronary angiography. The impact of successful PCI and use of ECLS after resuscitation were evaluated on in-hospital survival and one-year survival without severe brain injury (cerebral performance category 1-2).

Results Of the 321 patients included, 197 (62%) had one or more significant acute coronary lesions whom 93.5% were successfully treated by PCI. ECLS was used in 21% of patients with severe cardiogenic shock (25%) or refractory cardiac arrest (75%). In-hospital survival rate was 35.5% and one-year survival rate without severe brain injury was 29%. At one year, patients with a PCI failure despite of a serious coronary lesion had a poor prognosis compared to patients who underwent a successful PCI (9% vs 40%, HR = 4.9, 95% CI (1.7-14), p < 0.005). Patients with successful PCI and those without coronary lesions had similar survival rate (29% vs 33%, HR = 1.2 p =0.9). Patients treated by by ECLS had a similar survival that patients who did not require any (23% vs 38%. HR=1.42, p=0.15).

Table 1. Flow-cliait of the study			
	Total (n=322)	% ou DS	
Age, y	58	14.1	
Male	248	77%	
HTA	128	39.7%	
Dyslipidemia	106	32.9%	
Smoking	149	46.3%	
Diabetes mellitus	45	13.9%	
History of coronary artery disease	65	20.2%	
Shockable rhythm	202	62.7%	
ECG post-ROSC			
ST elevation	135	41.9%	
Others	187	58.1%	
Time of no flow (min)	6.5	5	
Time of low flow (min)	36.3	38.5	
Mechanical ventilation	304	94.4%	
Cardiogenic/ Vasoplagic shock	222	68.9%	
Therapeutic hypothermia	258	80.1%	
ECLS	71	21%	
Initial pH	7.2	0.2	
Initial blood lactate level (mmol/L)	7.4	5.5	

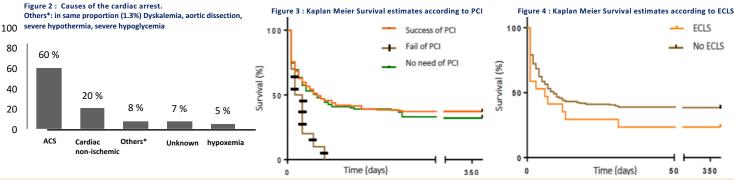

Table 1 : Flow-Chart of the study

Table 2 : Angiography coronary results

	101AL (11-322)
Acute coronary occlusion (TIMI 0 or TIMI 1)	147 (45.7%)
Coronary artery stent thrombosis	12 (3.7%)
Significant stenosis >70% as culprit lesions	51 (15%)
Spontaneous coronary spasm	9 (2.8%)
Single-vessel involved	127 (64)
Two-vessel disease	53 (27%)
Three-vessel disease	20 (10%)
Left main coronary involved	19 (9.9%)
Non-significant coronary lesions	186 (33%)

Table 3 : Multivariable analysis of predictors of death

	OR	95% IC	р
Ventricular Fib/Tachy	0,11	0,02 - 0,62	0,012
Defibrillation	0,158	0,05 - 0,52	0,002
Non ischemic cardiac cause of OHCA	0,31	0,12 - 0,79	0,015
Time before spontaneous circulation	1,025	1,02 - 1,05	0,3
Age	1,035	1,005 - 1,06	0,02
Initial Blood lactate level	1,176	1,04 - 1,33	0,011
Glasgow (per points below 15)	1,199	1,03 - 1,4	0,022

Conclusion In our study, successful PCI was associated with a similar prognosis than patients without coronary artery disease, whereas PCI failure was associated with a very poor prognosis. ECLS, using has a rescue support for cardiogenic shock was associated with a similar prognosis than patients without needs of it.

TOTAL (n=222)