NOACs vs vitamin K antagonists in patients with extreme body weights

Jean-philippe collet, FESC Paris-Sorbonne Université, Institut de Cardiologie, Pitié-Salpêtrière, APHP ACTION Study Group (www.action-coeur.org) Paris_France

man for a

Pitié-Salpêtrière Hospital – Paris 6 Sorbonne University

ACTION-CEUR www.action-cœur.org

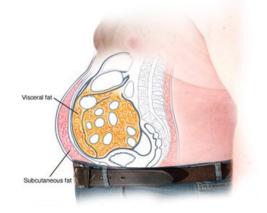
Declaration of conflict of interest

- Speakers fees: BMS/Pfizer, Bayer, Servier, Astra-Zeneca.
- Consultant fees: BMS/Pfizer, Bayer.
- Proctoring: Medtronic.
- Research Grants: BMD/Pfizer, Medtronic.

Definition

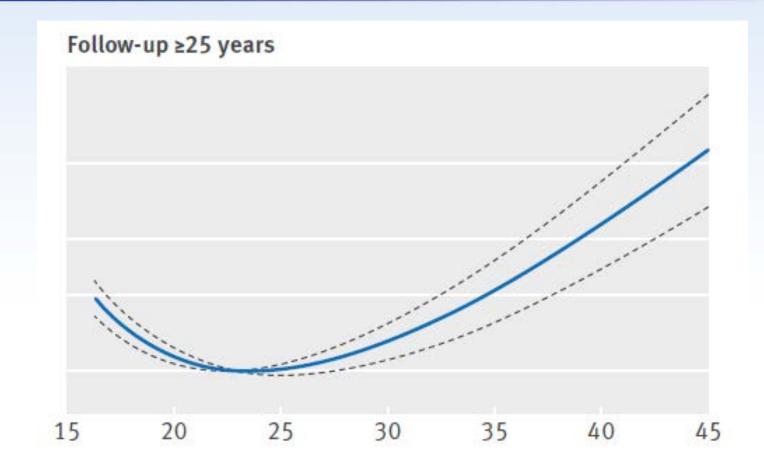
Definition

Classification	BMI (kg/m²)
Underweight	<pre>< 18.5¹ - Moderate thinness: 16-16.99 - Severe thinness: <16</pre>
Normal weight	18.5-24.99 ¹
Overweight (pre-obesity)	25-29.99 ¹
Obese	≥ 30 ¹
Class 1	30-34.99 ¹
Class 2 (moderate obesity)	35-39.99 ¹
Class 3 (severe or morbid obesity)	≥40 ¹
Class 4 (super-obesity)	≥50
Class 5 (super-super or extreme)	≥60


Obesity affects 33.9% of US adults and between 10% (Italy) and 23% (UK) of EU adults. <u>http://apps.who.int/bmi/index.jsp</u>.

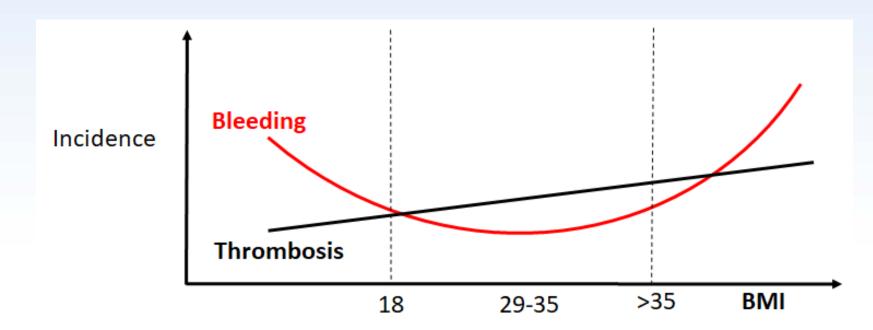
Definition

Classification	BW (kg or lbs)		
Underweight	<60 or ≤56 ¹⁹⁰ or ≤50kg;		
Underweight	≤12 lbs ¹⁹⁰		
Normal waight	>60 or >50 up to 70 or 76 or 85kg;		
Normal weight	125-168lbs ¹⁹⁰		
Overweight (pro chosity)	≥76 up to 92or 100 kg;		
Overweight (pre-obesity)	169-20 lbs ¹⁹⁰		
Ohaaa	>100 or >92kg;		
Obese	>20%increase of the IBW; ≥203lbs ¹⁹⁰		
Class 1			
Class 2 (moderate obesity)	>100% of the IBW		
Class 3 (severe or morbid obesity)	≥150 or ≥123kg ¹⁹⁰ ;		
	≥ 271lbs ¹⁹⁰		
Class 4 (super-obesity)			
Class 5 (super-super or extreme)			


The drawbacks of using BMI

- BMI a good marker of CV risk if not necessarily the best measure of adiposity.
- Ethnic differences and gradual global increase in BMI values cast doubts over the "normal range" definition.
- BMI does not differentiate between metabolically-healthy and metabolicallyabnormal obesity (increased visceral fat and insulin resistance).

Clinical impact of extreme BMI


Weight and mortality

Mortality rates are increased up to 12-fold in morbidly-obese subjects (nadir 23-24)

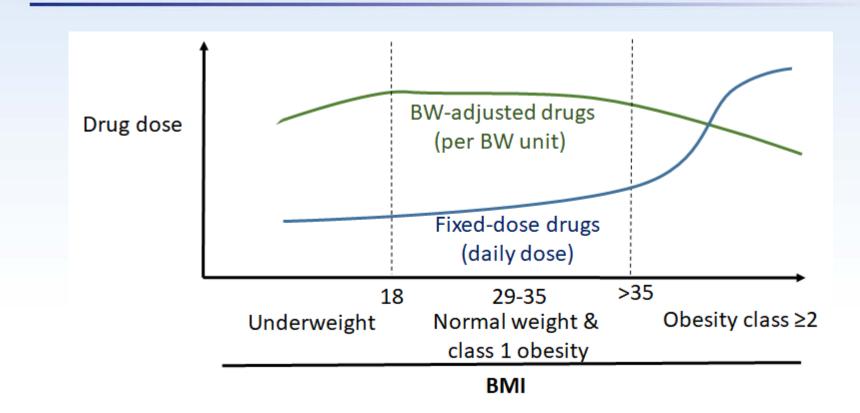
Aune D. BMJ 2016;353:i2156.

Cardio-Vascular events according to BMI

- U-shaped relation between BMI and spontaneous bleeding
- Enhanced risk of ICH and extracranial bleeds among underweight
- Greater risk of deep ICH and extracranial bleeding among obese individuals
- Blood pressure should be carefully controlled in individuals on antithrombotic therapy

Aune D. BMJ 2016;**353**:i2156. Hansel B. Eur J Prev Cardiol 2015;**22**(2):215-22.

PK and extreme BMI


Impact of weight on PK

Organ/apparatus	Type of Change vs. non-obese	Pharmacological effect
Lean mass	7	Vd for hydrophilic compounds
Fat mass	7	↗ or normal Vd for lipophilic compounds
Tissue perfusion	Ы	concentration of drugs in low-perfused tissues
Blood volume	7	
Body water	Ы	
Acute phase proteins, FFA, α1 acid glycoprotein	7	↗ or normal protein-drug binding and ↘ free plasma concentration

Impact of weight on PK

Organ/apparatus	Type of Change vs. non-obese	Pharmacological effect
Heart	Excess of epicardial fat, LV hypertrophy, left atrial enlargement. Mostly reversible with weight loss	Variable tissue blood supply
Liver	Early stages: 7 in hepatic blood flow/Clearance Later stages: non-alcoholic fatty liver or cirrhosis	Early stages: normal or 7 biotransformation
- Phase I enzymes (CYP450) ⁶⁸	Reduced 3A4 activity Increased 1A2, 2E1, 2C9 expression or activities	Variable CYP450-dependent biotransformation
- Phase II enzymes	Increased glucuronidation and sulfation	↗ biotransformation
Kidney	Early stages: increase in GFR Later stages: chronic kidney disease may develop	Early phases: オ renal clearance. Drugs should be adjusted based on the measured rather than calculated CrCl, or CrCl calculated on IBW or LBW

Pharmacology according to BMI

- Fxed-dose ATT drugs might be over- and under-dosed for BMIs <18.75 and ≥35 kg/m².
- Relationship between underweight/obesity and BW-adjusted drugs remains unknown.

Clinical consequences

Vitamin-K antagonist (VKA)

- − Longer time to achieve target INR and *¬* dose requirement of VKAs in obese
- A positive correlation between BMI and warfarin MD (0.69 mg per 1kg/m² BMI increase)
- BMI >30kg/m² predicts anticoagulation reversal failure using weight-based PCC.
- This is the opposite in underweight patients

In obese and underweight patients the efficacy/safety profile might be different. Whether therapeutic INR range should be similar irrespective of BMI is unknown.

Br J Haematol 2011;**155**(2):137-49. J Thromb Thrombolysis 2013;**36**(1):96-101.

- In healthy subjects, Cmax and AUC inversely correlate with BW/BMI, showing a 30%
 ↗ below 50kg and 30% ↘ above 120kg vs. normal weight.
- In ARISTOTLE, safety and efficacy of apixaban vs. warfarin were similar in NVAF patients > and < 60kg
- Obesity was associated with lower mortality (OR 0.63, 95%CI: 0.54-0.74), without differences in stroke/SE (OR 0.79, 95%CI:0.61-1.02) and major bleeding (0.91 95%CI 0.74-1.1).

Consensus statements: In underweight (≤60 kg) patients, apixaban dose should be reduced in association with reduced renal function (creatinine <133 µmol) or age <80 yrs (apixaban)

Eur Heart J 2016;**37**(38):2869-2878.

EDOXABAN

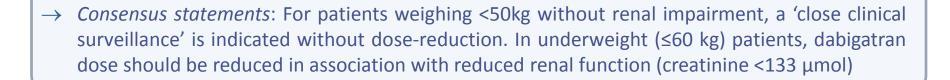
- Edoxaban Cmax is ≈40% ↗ in patients <60kg,¹³¹ causing 50% dose ↘ in HOKUSAI-VTE/ENGAGE AF-TIMI 48.
- In HOKUSAI-VTE, 12% of the patients were underweight and the primary outcome was comparable to the non-underweight population.
- Half dose in the ENGAGE AF trial resulted in \approx 30% lower exposure to edoxaban, →significant \checkmark of major bleeding vs. full dose but no differences in efficacy.
- No data are available on edoxaban across different degrees of obesity.

Consensus statements: In ≤60 kg patients, edoxaban dose should be reduced

Eur J Clin Pharmacol 2014;70(11):1339-51.

RIVAROXABAN

- Pharmacokinetics of rivaroxaban do not change significantly according to extreme BMI
- Obesity (i.e. BMI ≥30 kg/m²) did not affect the safety/efficacy profile of the EINSTEIN-DVT and –PE, EINSTEIN-CHOICE, and ROCKET-AF (subgroups with BMI ≤25, 26-35, >35kg/m²) trials (class ≥2 obesity was ≈13% of the entire population).



Consensus statements: rivaroxaban dose does not need reduction in underweight.

Clin Pharmacokinet 2011;**50**(10):675-86 Br J Clin Pharmacol 2012;**74**(1):86-97

DABIGATRAN

- BW affects dabigatran concentration with parallel ≈21% increase and reduction of dosenormalized plasma concentrations <50 and >100Kg, respectively, vs. 50-100kg.¹³⁷
- BW significantly influences Vd of dabigatran (0.77% increase per 1-kg increase, >80 kg).¹³⁷
- In RE-LY, patients <50 kg and >100kg were 2% and 16% of the total population (n=18,113), without major effects on efficacy and safety across subgroups.¹³⁸
- In the RE-COVER trial, patients with BMI >35kg/m² were 12% of the total population, with very few events.¹²⁷ Thus, information on dabigatran in different degrees of obesity is limited.

J Am Coll Cardiol 2014;**63**(4):321-8. J Thromb Haemost 2011;**9**(11):2168-75

OAT in underweight and obesity

		Normal	Obesity		
Drug	Underweight <18.5 kg/m ²	Weight (reference)	Class 1 30-34.9 kg/m ²	Class 2 35-39.9 kg/m ²	Class ≥3 ≥40 kg/m²
VKA	Close INR monitoring	INR-adjusted regimen	No change	Close INR monitoring	Close INR monitoring during reversal. Preferred OAC
Apixaban (AFib & VTE)	2.5 mg bid if <60kg and ≥80yrs or creat ≥1.5 mg/dl	AFib: 5 mg bid; VTE: 10 mg bid 7 days and then 5 mg bid	No change	Insufficient data	Insufficient data, prefer VKA; check peak &through anti-Xa activity if used
Rivaroxaban (AFib, VTE, post- ACS)	No change. ACS caution with DAPT if BW<60 kg	AFib: 20 mg od VTE: 10 mg od ACS: 2.5 mg bid	No change	No change	
Edoxaban (AFib & VTE)	30 mg for BW≤60 kg	60 mg od	No change	No data. Check peak 8	& through anti-Xa activity.
Dabigatran (AFib & VTE)	Close surveillance in patients <50 kg	AFib: 150 mg bid VTE: 220 mg od	No change	Insufficient data. Check ECT or dTT	No data. Prefer VKA. Check peak & through ECT or dTT.

Conclusions

- Evaluate the bleeding risk of underweight patients
- − Data are limited in obese patients with $BMI \ge 40 kg/m^2 \rightarrow CAUTION$
- Peak and trough anti-Xa activity (FXa inhibitors), ecarin clotting time (ECT) or diluted thrombin time (dTT) (dabigatran) should be checked → switch to VKA if results are different than expected.
- Evidence on direct inhibitors for DVT prophylaxis post-bariatric surgery is extremely limited → prefer LMWH. Repeated monitoring of anti-Xa activity or ECT at short- and mid-term.

J Thromb Haemost 2016;**14**(6):1308-13 Br J Clin Pharmacol 2017;**83**(7):1466-1475.

Slides available at www.action-coeur.org

Antithrombotic therapy and body mass:

an expert position paper of the ESC Working Group on Thrombosis

Bianca Rocca¹, Keith A.A. Fox², Ramzi A. Ajjan³, Felicita Andreotti⁴, Colin Baigent⁵, Jean-Philippe Collet⁶, Erik L. Grove⁷, Sigrun Halvorsen⁸, Kurt Huber⁹, João Morais¹⁰, Carlo Patrono¹, Andrea Rubboli¹¹, Ingebjorg Seljeflot¹², Dirk Sibbing¹³, Agneta Siegbahn¹⁴, Jurrien Ten Berg¹⁵, Gemma Vilahur¹⁶, Freek W.A. Verheugt¹⁷, Lars Wallentin¹⁸, Thomas W. Weiss⁹, Johann Wojta¹⁹ and Robert F. Storey²⁰

¹Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy;

²Centre for Cardiovascular Science, University and Royal Infirmary of Edinburgh, Edinburgh, United Kingdom;

³Leeds Institute for Cardiovascular and Metabolic Medicine, the LIGHT Laboratories, University of Leeds, Leeds, LS2 9JT, United Kingdom;

⁴Cardiovascular Department, Catholic University Hospital, Rome, Italy;

⁵ MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, United Kingdom ;

⁶ Sorbonne Université Paris 06 (UPMC), ACTION Study Group , INSERM UMR_S 1166, Institut de Cardiologie, Pitié-Salpêtrière Hospital (AP-HP), Paris, France;

⁷Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark & Faculty of Health, Department of Clinical Medicine, Aarhus University, Denmark;

⁸Department of Cardiology, Oslo University Hospital Ulleval and University of Oslo, Oslo, Norway;

⁹3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital, and Sigmund Freud University, Medical School, Vienna, Austria;

¹⁰ Division of Cardiology, Leiria Hospital Center, Leiria, Portugal

¹¹Division of Cardiology, Laboratory of Interventional Cardiology, Ospedale Maggiore, Bologna, Italy;

¹²Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ulleval and University of Oslo, Norway;

¹³Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-Universität, Munich, Germany and DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany;

¹⁴Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden;

¹⁵Department of Cardiology, St Antonius hospital, Nieuwegein the Netherlands;

¹⁶Cardiovascular Science Institute-ICCC, IIB-Sant Pau, CiberCV, Hospital de Sant Pau, Barcelona, Spain;

¹⁷Department of Cardiology, Onze Lieve Vrouwe Gasthuis (OLVG), Amsterdam, Netherlands;

¹⁸Department of Medical Sciences, Cardiology, Uppsala University & Uppsala Clinical Research Center, Uppsala, Sweden;

¹⁹Department of Internal Medicine II, Medical University Vienna; Core Facilities, Medical University Vienna; Luwdwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria;

²⁰Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.

Corresponding Author:

Bianca Rocca, MD, PhD Department of Pharmacology Catholic University School of Medicine Rome, Italy Email: <u>bianca.rocca@unicatt.it</u>; <u>b.rocca@tiscali.it</u> Phone: +39 06 30154253 Fax: +39 06 3050159